INTRODUCTION & OBJECTIVES

The invasive plant species **Japanese knotweed** (*Fallopia japonica*, Fig. 1 A), **Tree of Heaven** (*Ailanthus altissima*, Fig. 1 B), **common reed** (*Phragmites australis*, Fig. 1 C), and **purple loosestrife** (*Lythrum salicaria*, Fig. 1 D) are all currently present in Bushkill Township, PA.

The objectives of the Bushkill Township Invasive Species Management Project are to (1) identify and map these four species within Bushkill Township; (2) use this information to predict where these species are most likely to be found within the township; (3) develop an action plan for invasive species treatment and social media outreach.

Analysis

- ArcGIS 10.1 used to calculate properties of each stand.
- Elevation, slope, aspect, residential density, soil type, and distance from bodies of water, woodlands, wetlands, tower corridors, & bridges.
- Above features that best characterized each species’ affinities were used to create hot spot maps.
- Two maps were created for purple loosestrife, one before fieldwork based solely on literature and one after fieldwork.

RESULTS: MAPS

Invasive Species in Bushkill Township

Predicted Hot Spots of Japanese Knotweed

Predicted Hot Spots of Tree of Heaven

Predicted Hot Spots of Purple Loosestrife, Before Fieldwork

Predicted Hot Spots of Purple Loosestrife, After Fieldwork

RESULTS: SPECIES AFFINITIES

Table 1. Select features with the average or majority for each species (n = number of data points collected). Asterisks represent the features chosen for hot spot map calculation (asterisk in parenthesis for ‘before’ map only).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Japanese Knotweed</th>
<th>Common Reed</th>
<th>Tree of Heaven</th>
<th>Purple Loosestrife</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from a body of water</td>
<td>224 ft *</td>
<td>304 ft</td>
<td>658 ft</td>
<td>187 ft *</td>
</tr>
<tr>
<td>Distance from forested area</td>
<td>39 ft *</td>
<td>640 ft</td>
<td>140 ft *</td>
<td></td>
</tr>
<tr>
<td>Distance from wetlands</td>
<td>450 ft</td>
<td>631 ft</td>
<td>1185 ft</td>
<td>535 ft *</td>
</tr>
<tr>
<td>Residential Density</td>
<td>Low *</td>
<td>Low *</td>
<td>Med-low *</td>
<td>Low *</td>
</tr>
<tr>
<td>Distance (Average)</td>
<td>483 ft</td>
<td>665 ft *</td>
<td>806 ft</td>
<td>573 ft</td>
</tr>
<tr>
<td>Slope (Average)</td>
<td>9.82°</td>
<td>6.33°</td>
<td>12.89°</td>
<td>8.62°</td>
</tr>
<tr>
<td>Soil type (majority)</td>
<td>70% all hydric</td>
<td>86% partially</td>
<td>89% partially</td>
<td>hydric *</td>
</tr>
</tbody>
</table>

To predict species affinity throughout Bushkill Township, the above selected features were used to assign quantitative high/medium/low affinities for each species. All features were weighted equally in the creation of hot spot maps, which are accurate to 30 sqft (Figure 4).

CONCLUSIONS

- Hot spot maps are a useful tool for predicting where a species is most likely to be found.
- Invasive species do not all have the same affinities.
- Hot spot maps are more specific and focused if more data is collected (Fig. 4 B, n=67 vs Fig. 4 D, n=14).
- Literature alone cannot accurately predict species affinity – fieldwork is essential (Fig. 4 E is 47% accurate, Fig. 4 F is 96% accurate).

FUTURE WORK

- Use hot spot maps to guide future fieldwork for these species in areas of interest within Bushkill Township.
- Expand data collection to include additional species.
- Develop action plan for invasive species treatment using knowledge of species locations.
- Expand current database by resident use of the Bushkill Township Invasive Species Data Collection Application.

MAP SOURCES

* Not all sources were included in final maps but all were used for data analysis.